
LLNL-JRNL-568309

Message Passing Interface and
Multithreading Hybrid for Parallel
Molecular Docking of Large Databases
on Petascale High Performance
Computing Machines

X. Zhang, S. E. Wong, F. C. Lightstone

August 1, 2012

Journal of Computational Chemistry

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

	 1	

Message	 Passing	 Interface	 and	 Multithreading	 Hybrid	
for	 Parallel	 Molecular	 Docking	 of	 Large	 Databases	 on	
Petascale	 High	 Performance	 Computing	 Machines	 	

	
Xiaohua	 Zhang,	 Sergio	 E.	 Wong,	 and	 Felice	 C.	 Lightstone*	

	 2	

Abstract	
	
A mix of message passing interface (MPI) and multithreading parallel scheme has been

implemented in the AutoDock Vina molecular docking program. The resulting program,

named VinaLC, has been tested on the petascale high performance computing (HPC)

machines at Lawrence Livermore National Laboratory. To exploit the typical cluster-type

supercomputers, thousands of docking calculations were dispatched by the master process to run

simultaneously on thousands of slave processes, where each docking calculation takes one slave

process on one node, and within the node each docking calculation runs via multithreading on

multiple CPU cores and shared memory. Input and output of program and the data handling

within the program have been carefully designed to deal with large databases and ultimately

achieve high performance computing on a large number of CPU cores. Parallel performance

analysis of the VinaLC program shows that the code can scale up to more than 15K CPUs with a

very low overhead cost of 3.94%. One million flexible compounds docking calculations took

only 1.4 hours to finish on about 15K CPUs. The docking accuracy of VinaLC has been

validated against the DUD data set by the re-docking of the X-ray ligands and an enrichment

study. The re-docking of the X-ray ligands have shown that 64.4% of the top scoring poses with

RMSD values under the 2.0 Å cutoff. The program has been demonstrated to have good

enrichment performance on 70% targets in the DUD data set. An analysis of the enrichment

factors calculated at various percentages of the screening database indicates VinaLC has very

good early recovery of actives. 	

	 3	

Introduction

Structure-based high throughput virtual screening has been widely applied in the early stage of

drug discovery because of its low cost, high efficiency, and some crucial successes in recent

years1-3. Molecular docking based virtual screening involves a target protein structure, either

experimentally solved or computationally modeled, and a library of small molecules that fit into

the active site of this target to estimate binding affinity. About 10% of the human genome,

containing ~30,000 genes that express proteins able to bind drug-like molecules, is estimated to

be druggable4. In the past few years the number of protein structures publicly available has

increased rapidly, not to mention many other structures held by the pharmaceutical companies.

The Research Collaboratory for Structural Biology (RCSB) database5 currently has more than

80K protein structures deposited in the database, with thousands being added each year. In

addition, the chemical space of small molecules is enormous and the number of drug-like

compounds has been estimated to be 1060.6 The ZINC database7, a free database of commercially

available compounds for virtual screening, has more than 30 million entries up to date. Millions

of potential drug candidates are required to be screened against the ever-increasing number of the

druggable biological targets, which makes it an urgent task to develop fast and accurate

screening techniques that can deal with massive amounts of data.

Various docking programs, either open-source (e.g. DOCK8,9, AutoDock10,11) or commercially

available (e.g. FlexX12, GLIDE13,14, GOLD15), have been developed and have evolved in the last

few decades. Molecular docking is basically a conformational sampling procedure to identify the

best binding pose of a small molecule fitting into a protein target16. The conformational sampling

procedure is usually based on Monte Carlo simulations, simulated annealing, genetic algorithm,

or other sampling methods. The sampled poses are then evaluated with various scoring functions

	 4	

and ranked according to their scores17. The types of scoring functions can be divided into four

categories: molecular mechanics force-field method, empirical scoring functions, quantum

mechanical method, and knowledge-based potentials18,19. Docking programs can employ a

combination of different sampling techniques and scoring functions to achieve certain accuracies

at various speeds. Most docking programs were originally designed to run on personal computers

or small workstations. The scalability of these programs often becomes poor when using a large

number of CPU cores. Some commercial programs even set tokens to limit the number of jobs

that can be run in parallel.

With the growth power of supercomputers, efforts have been made to parallelize the docking

programs and to scale up to a large number of CPU cores. There are several ways to implement a

parallel docking program, running on high performance computing (HPC) machines. The first

approach is to launch parallel jobs through a job dispatching system, e.g. portable batch system

(PBS)20 is a popular job scheduler on HPC machines. DOVIS 2.0 is a parallel docking program

based on AutoDock 421 and relies mainly on the job queuing system to run the job in parallel22.

For scale up to 256 CPUs, DOVIS 2.0 has reasonable efficiency. However, the major bottleneck

for this approach is that the communication between individual jobs must use intermediate files,

which increases the I/O activity, slows down the calculation, and limits the maximum number of

CPUs that can be used simultaneously. The second approach is to run the program by using

cloud computing23. Opal web service24 provides AutoDock on a cloud platform. Recently,

Schrödinger tested virtual screening of 21 million compounds using their docking program on

the Amazon cloud platform (Schrödinger website news). The docking calculation scaled from 0

up to about 50,000 steadily over three hours. The shortcoming of cloud computing is that it takes

time to reach optimal scalability, which can result in a waste of CPU recourse at the beginning.

	 5	

The third approach is to utilize GPU processors. Recently, large-scale GPU clusters and

GPU/CPU hybrid clusters are gaining popularity in the scientific computing community25.

However, their deployment and production use are associated with several challenges in terms of

the application development process, job scheduling, and resource management. Yang and co-

workers26 have leveraged the computational power of GPUs to accelerate DOCK6's27 Amber28

scoring with the NVIDIA CUDA platform29. Their results show that a single GeForce 9800 GT

GPU-based docking program achieves a 6.5x speedup with respect to the original version

running on an AMD dual-core CPU. Korb and co-workers25 developed a GPU-based protein-

ligand docking program PLANTS, which has speedup factors up to 10x on a NVIDIA GeForce

8800 GTX GPU. Currently, most GPU-based docking programs use a single GPU processor so

that their speedup factors are usually within 10, as compared to a single CPU. The fourth

approach is to use a message passing interface (MPI) to parallelize the application for standard

CPU clusters, which is still the mainstream of the high performance computing. An MPI-based

implementation docking program based on Autodock 4 (Autodock4.lga.MPI) has been

developed by Collignon et. al.30. It scales up to 8192 CPUs with a maximal overhead of 16.3%,

two thirds of which are due to input/output operations, and one third originates from MPI

operations. The relative high overhead is due to the usage of intermediate files. In 24 hours, on

8192 high-performance computing CPUs, 300K small flexible compounds or 11 million rigid

compounds can be docked to a single rigid protein.

AutoDock Vina is a molecular docking program recently developed by Trott and Olson31 that

achieves an approximately two orders of magnitude speed-up compared with AutoDock 4,21

developed at the same lab. Since its creation, AutoDock Vina has been widely deployed in

molecular docking studies32-35. It also significantly improves the accuracy of the binding mode

	 6	

predictions compared to AutoDock 436. Further speed-up is achieved by using multithreading of

docking pose generation on multicore CPU processor. AutoDock Vina calculates the grid maps

on-the-fly, which makes it more user-friendly as compared to AutoDock 4. As a new generation

of docking software from Olson’s Lab, Vina uses a totally different sampling algorithm and

scoring function from that of AutoDock 4. Vina employs a Monte Carlo based sampling

algorithm named “iterated local search global optimizer” similar to the method developed by

Abagyan et. al.37, which is a succession of steps consisting of a mutation and then a local

optimization step, with each step being accepted according to the Metropolis criterion. The Vina

scoring function uses empirical terms that account for steric forces, attraction, repulsion,

hydrophobicity, hydrogen bonding, and molecular flexibility, which allows rapid assessment of

docking poses. Due to its high accuracy with fast computing speed, Vina is an ideal candidate

code to be parallelized and run on HPC.

Here, we implemented an MPI and multithreading hybrid parallel scheme in the Vina molecular

docking program. The resulting program is named VinaLC, where LC stands for Livermore

Computing. The parallel performance of the VinaLC program was investigated on several

different types of supercomputers, including petascale HPC machines. Furthermore, we evaluate

VinaLC’s accuracy by examining enrichment and pose quality. The DUD dataset was used to

compare VinaLC with benchmark studies performed using other docking programs38.

	 7	

Computational Details

Mixed MPI and multithreading programming

In order to exploit the computing resource of HPC machines, the original code of Vina (version

1.1.231) was modified using MPI and multithreading hybrid parallel programming. The original

Vina is a multithreading C++ program using the Boost thread library39, which runs on shared

memory and is hard to scale up to larger numbers of CPUs. Nowadays, a typical supercomputer

consists of a large number of nodes (1000s to 100,000s). Within a node several CPU cores share

memory, and between the nodes the interconnection allows programs on each node to interact

with each other in a distributed memory system, which is usually slower than within the node.

Thus, a multithreading parallel program that uses distributed memory lacks efficiency when

running on HPC. It will be more efficient to deploy a message-passing multiprocess. Therefore,

we use a mixed MPI and multithreading scheme in the parallel program (Figure 1), where within

the node multithreading is used, and among different nodes an MPI parallel scheme is applied.

MPI Scheme

A careful design MPI scheme has been implemented in the VinaLC program so that it is able to

achieve high scalability with low overhead. The calculating time for each docking calculation

could be significantly different due to the differences among ligands, receptors, and the grid box

sizes in the active site of receptor. Distributing docking calculations evenly on each MPI process

will affect the MPI load balance because some processes will finish docking calculations early

and then idle, waiting for other processes to complete their calculations. To keep every process

busy and reduce the idling time, the program employs a master-slave MPI scheme as illustrated

in the Figure 2. The master process is shown on the left side, and the slave processes are on the

right. The MPI calls are designated by the solid-color boxes, paired in the same color, and

	 8	

connected by the arrows. The directions of the arrows show the direction of the data flow for

each pair of MPI calls. The light-grey boxes represent loops in the program. The master process

has three ‘for loops’ and each slave process has one infinite ‘while loop’. For the master process,

the first ‘for loop’ is a job loop, which goes through every combination of the receptor and

ligand. Two pairs of MPI send/recv calls, colored in blue and green respectively, control the job

flow. The free slave process sends its MPI rank to the master process. The master process tries to

receive the rank of any free slave process by using MPI_Any_Source tag. If there are still

docking calculations in the queue, the master process sends an unfinished job flag to the free

slave process so that the infinite ‘while loop’ keeps running. All the input and output data are

handled by the master process. The input data are packed into one data package so that only one

pair of MPI send/recv calls is required to reduce the MPI overhead, so does output data. The

master process sends the input data required for the docking calculation to the slave process.

After receiving the input data, the slave process performs the docking calculation. The slave

process sends the output data back to the master process when it finishes the assigned calculation

from the master process. Only after the master process has assigned each slave process with a

docking calculation will the master process start collecting the output data. The second ‘for loop’

is used to collect the data. If the size of the jobs is larger than the number of slave processes, the

size of the loop equals the number of slave processes. If not, the size of the loop equals to the

size of the jobs. The master process will garner the output data from any slave process by using

MPI_Any_Source tag. Once the output data from the slave process is collected, then the master

process will give that slave process another job. The third ‘for loop’ in the master process sends a

finished job flag to free the slave processes. The slave process breaks the infinite ‘while loop’

after receive the job flag. The MPI run finishes after the third ‘for loop’. By implementing such a

	 9	

master-slave MPI scheme, the master is in charge of job dispatching, input, and output while the

slave processes are kept busy by running individual docking calculation until all the calculations

are finished.

Code Implementation

The code implementation includes MPI parallel, input/output, data handling, and file formats.

The original Vina code was converted to a single complex docking function, and an MPI

program scaffold was built on top of this docking function. The MPI part of the code is in charge

of the docking task dispatching, and the docking function performs individual docking

calculations. The code was re-designed so that the master process will perform the input and

output operations. The code for parsing input files was converted to a function so that it can be

called by master process. The raw input and output data are stored in two C++ structs,

respectively, so that only two pairs of MPI send/recv calls are required to communicate the data

between the master and slave processes. The input data struct contains the information about the

ligand and receptor, number of threads, docking grid, exhaustiveness of the conformer searching,

and other options required for the docking calculation. The original Vina code parses the ligand

and receptor PDBQT files and calculates the grids on the fly. Our parallel program has to handle

thousands to millions ligand/receptor structures. To make it simple, the ligand and receptor

structures are saved in several large multi-structure PDBQT files. For example, more than one

million ZINC ligand structures can be saved in 40 multi-structure PDBQT files. Each PDBQT

files contains about 25K ligands. Two ‘for loops’ are involved when the master process reads in

the input structures. The outer loop loops through the receptor PDBQT file list, while the nested

inner loop loops through the ligand PDBQT file list. After reading in one ligand structure, one

docking calculation is launched on slave process by master. The master process reads in the

	 10	

structure files of the ligand and receptor structures as a string stream and saves them in large

character buffers/arrays as raw data in the input data struct. It also calculates the docking girds

and stores them as arrays in the input data struct. The input data is passed from the master

process to the designated slave process. The slave process will populate the grids from the input

data and parses the raw ligand and receptor data into objects defined in VinaLC. The output data

struct contains two character buffers to save the log and docking poses respectively. The original

Vina logs are re-directed to a string stream by the slave process. The string stream is saved in the

character buffer in the output data struct. Also, instead of writing an output file, the docking

poses are piped into a string stream and then store in the character buffer in the output data

struct. The output data struct is passed to the master process by the slave process. The master

process saves the entire log and all docking poses into two GZip files to save the disk space. The

GZip file for nine million docking poses is about 3 Gig bytes, which is easier to maintain than

saving docking poses in millions of individual files. Many screen outputs that were in the

original Vina program, such as progress bars, thread messages, job messages, etc, have been

disabled to reduce the I/O activity.

VinaLC has also been further optimized from the original version in many other aspects.

Computational expensive calculations have been replaced with cheaper and simpler algorithms

without sacrificing accuracy or precision. For example, many “sqrt” functions, which calculate

the square root of a number, have been removed from the code. The algorithms that involve these

functions have been changed to alternate methods.

Benchmarking Data Sets

Benchmarking data sets have been carefully selected to carry out parallel performance analysis

and docking accuracy validation. Two benchmarking data sets, ZINC7 and DUD (a Directory of

	 11	

Useful Decoys)38 databases, were chosen in this study. ZINC is a free database of commercially

available compounds for virtual screening. ZINC contains over 30 million purchasable

compounds. We randomly selected 1 million compounds from the ZINC database to test the

efficiency and scalability of VinaLC. The receptor for the ligand docking is the Thermus

thermophilus gyrase B ATP-binding domain (PDB ID: 1KIJ). The grid box was generated at the

center of the receptor active site with a cubic size of 106×106×106 with grid spacing of 0.375 Å.

To benchmark the VinaLC docking accuracy calculation, the DUD database was selected

because DUD is both a diverse and difficult database for structure-based virtual screening. DUD

contains 2950 annotated ligands for 40 diverse targets and about 36 decoy molecules for each

annotated ligand. A complete list of 40 targets and their full names can be found in the

supporting information or the original DUD paper38. To avoid bias in the dataset, decoy

molecules were assembled to physically resemble ligands but are chemically distinct from other

molecules38. Thus, ligand enrichment is not simply a separation of gross features but rather

reflects the ability to separate chemical features such that decoy molecules are unlikely binders.

Although there are known issues and limitations within the DUD40 database, the diversity of the

set with the decoys challenges any docking code. DUD dataset, acting as a standard docking

dataset, has been widely applied to benchmark various molecular docking programs40-42. In this

study, DUD dataset was used to benchmark our VinaLC so that it can be compared with other

programs. The ligand, decoy and receptor structures were obtained from the DUD website43. The

SDF and PDB formats of the structure files were converted to PDBQT format using

MGLTOOLS44. The grid box dimensions were set the same as that of Huang, et. al.38. The grid

spacing was set to be 0.333 Å.

	 12	

There are many ways to gauge the enrichment performance of the program. Enrichment factor

(EF)14,41,45 is one of methods that was used to measure the virtual screening performance of the

VinaLC docking program.

 ,

where activessampled is the number of actives found at x% of the screened database, activestotal is

the number of total actives in the database, Nsampled is the number of compounds at x% of

database, and Ntotal is the number of total compounds in the database. The enrichment factor has

several deficiencies because it largely depends on the composition of the data set and is not

stable at low x%. Thus, in this study we used the average value of EF calculated from 40 targets

in the DUD data set in order to eliminate the variability of data composition and reduce the

uncertainty of the value at low x%.

Input for Parallel VinaLC

The input for VinaLC employs a command-line style. The program will take the input

parameters from either an input file or command line options. A typical command line to run

VinaLC using the SLURM46 job scheduler follows:

srun -N1284 –n1284 –c12 ./vinalc --recList recList.txt --ligList ligList.txt --geoList geoList.txt --

exhaustiveness 12

This command line tells the SLURM job scheduler to run the calculation on 1284 nodes, launch

1284 processes simultaneously, and use 12 CPUs for each process. VinaLC reserves the MPI

rank of 0 for the master process and treats the rest as slave process. The process automatically

!

EF x% =
Activessampled
Activestotal

Ntotal

Nsampled

	 13	

detects the number of the CPUs and then launches the 12 threads for each docking calculation.

VinaLC reads in lists (recList.txt and ligList.txt) for the receptor and ligand PDBQT files

together with a list (geoList.txt) for the geometry of the receptor grid boxes. The option of

“exhaustiveness” specifies the number of the Monte Carlo simulations to be run for each docking

calculation and its default value is 8. Other options and their default values can be printed out by

VinaLC if the user runs the program with option flag of “--help”.

The VinaLC docking program has demonstrated its portability by running on various types of

supercomputers. It has been ported to several different kinds HPC machines at Lawrence

Livermore National Laboratory, including Linux clusters of Intel Xeon processors, Linux

clusters of AMD Opteron processors, and a new IBM 20-petaflop supercomputer with BG/Q

architecture47. The code was extensively tested on a Linux cluster of Intel Xeon processors for

parallel processing, composed of 1,944 nodes, in which there are 1865 total compute nodes.

Nodes are Intel Xeon 5660 dual-socket 6-core nodes, each with a total of 12 cores (2.8 GHz) and

24 GB of memory. Between the nodes, the InfiniBand QDR (quad data rate)48 is the high-speed

interconnect, which is necessary for the code to link to the MVAPICH library49, a MPI library

particularly tuned for the InfiniBand interconnect. The maximum number of nodes allowed for a

batch job is 1284 nodes (15,408 cores).	

	 14	

Results and Discussion
	
Parallel VinaLC scales to a large set of cpus with low overhead

Parallel Scalability. The scalability of MPI and multithreading mixed parallel VinaLC program

has been studied on a Linux cluster of Intel Xeon processors. The ligands in the test case were

selected from the ZINC database, in which the first 100K compounds were docked into the

active site of Thermus thermophilus gyrase B ATP-binding domain. The test case was calculated

on 600, 1200, 2400, 6000, 12000, and 15408 CPU cores, respectively. The MPI wall time for the

docking calculations decreases drastically as the CPU cores increases. As shown in Figure 3a,

the MPI wall time cuts by almost half each time the number of the CPU cores doubles. The

average CPU time of each docking calculation only changes from 82.98 to 89.69 seconds, when

number of CPU cores increases from 600 to 15408 (Figure 3b). The trend line of the average

CPU time deviates only slightly from the ideal average CPU time, as shown by dashed line. As

shown in the Figure 3c, the factors of speed up are almost identical to the ideal values when the

number of CPU cores is less than 6000 while The factors of speed up are only slightly less than

those of ideal ones when the number of CPU cores is larger than 6000. The average CPU time

per docking run and the speed up plots both suggest that VinaLC scales very well up to more

than 15K CPU cores. A test running with 1 million ZINC compounds docking in the active site

of Thermus thermophilus gyrase B ATP-binding domain was completed in 1.4 hours on 15,408

CPU cores. By extrapolation, VinaLC would allow docking of about 17 million flexible

compounds to a single protein in 24 hrs on 15K CPU cores.

MPI Performance analysis with mpiP. In order to probe the MPI performance, the VinaLC

program was profiled using the mpiP library50, a lightweight, scalable MPI profiling tool. Two

metrics were calculated by mpiP at various numbers of CPU cores: 1) the MPI time percentages

	 15	

for the master and slave processes and 2) the aggregate MPI time of the master and slave

processes. The MPI time percentage is plotted against the number of the CPU cores in Figure 3d.

For each calculation there is only one master process and the rest of the large number of

processes are slaves. Thus, the average MPI time percentage of both master and slave processes

are close to that of the slave processes, which results in the red line almost overlapping with

green one in Figure 3d. With the increase of CPU cores, the master process must deal with more

slave processes and handle the data output and input more frequently. The time percentage of the

master process spent on the MPI operations decreases steadily, which is due to the increased

burden on the master process, such as, compressing the output results, saving the docking poses,

and logs. When the number of slave processes is small, the master process is more readily

responsive to the requests of the slave processes. However, when the number of slave processes

increases, the slave processes spend more time waiting for the master to allocate docking

calculations. Therefore, the MPI time percentage of slave processes increases. The average MPI

time percentage is measured to be 3.94% for 15408 CPU cores.

Considering the computing time for MPI activity alone, the aggregate MPI time was calculated

at various numbers of CPU cores. The two MPI_recv calls colored in blue and green (Figure 2),

master process checking the available free slave process and slave process receiving a job flag

from the master process, have accounted for more than 99% of aggregate MPI time of all 11 MPI

send/recv calls. When the test case runs on 600 CPU cores, 83.78% of MPI time has been spent

on the master process checking the available free slave processes, and 15.97% has been spent on

the slave process receiving a job flag from the master process. The numbers are 55.32% (master

checking free slave processes) and 44.33% (slave process receiving job flag) when the test case

runs on 1200 CPU cores. As the number of CPU cores increases, the percentage of MPI time

	 16	

spent on the master process checking the available free slave process decreases while the that of

slave process receiving a job flag from the master process increases. When the test case runs on

15408 CPU cores, only 0.53% of MPI time has been spent on the master process checking the

available free slave process, and 99.07% has been spent on the slave process receiving a job flag

from the master process. The MPI_send calls for docking data input and output are colored in

purple and orange, respectively, (Figure 2) have totally accounted for less than 0.1% of MPI time

although they have delivered almost 100% of the aggregate sent message. The MPI_send call for

docking data output accounted for 90.76% of the aggregate sent message and that for docking

data input is 9.24%. The use of the GZip format for output files has achieved a 7:1 compression

ratio, which reduces the storage of results significantly.

Program profiling with Open|Speedshop. To investigate time consumption on each functionality

in the code, VinaLC was run with Open|Speedshop (OpenSS) profiling tool51. Due to the

overhead of OpenSS, VinaLC ran on only 60 CPU cores with a smaller test case. The program

was first profiled with the “PC sampling experiment” option in order to determine CPU time

spent on each function. VinaLC spends 94.11% on the actually docking calculations and about

5.52% on MPI operations. The function for pairwise energies and forces calculation in the Monte

Carlo simulation is the most time-consuming step, which accounts for 31.89% of the calculation

time. The second most time-consuming function is the ‘docking grids evaluation’ module that

takes 14.40%. The function to carry out Hessian matrix calculation accounts for 4.34%. These

results show that most of the computing time is spent on docking calculations. For rest of the

functions, each takes less than 5% of computing time. The program was then run with the “IO”

option to detect amount of time on I/O system calls. The program spends 96.47% time to read,

	 17	

3.07% to write, and 0.46% to close files. The total time of I/O system calls can be neglected as

compared to the total compute time.

Comparison to other parallel docking programs. Several other parallel docking programs have

already been reported to run on high performance computing so that we can compare parallel

performance of VinaLC to that of others. Compared to DOVIS, VinaLC can scale up to more

than 15K CPU cores while DOVIS is limited to 256 CPU cores22. Our MPI parallel scheme is

more efficient in communicating data and reduces the I/O activities so more CPU cores are

exploited. Compared to the cloud computing, the MPI implementation reaches high scalability at

the beginning of the calculations, utilizing the CPUs more efficiently, while it takes time for

cloud computing to utilize all CPUs. Autodock4.lga.MPI30 by Collignon et. al. uses a pure MPI

parallel scheme. Although Autodock4.lga.MPI scales up to 8192 CPUs, it has an overhead of

16.3%30. VinaLC can scales very well to 15408 CPUs with an overhead of only 3.94%. This

scale up translates into Autodock4.lga.MPI completing 300K small flexible compounds docking

calculations on 8192 CPUs in 24 hours. In contrast, VinaLC can finish 17 million flexible

compound docking calculations on 15408 CPUs in the same 24 hours. These advantages are

achieved by using a mixed MPI and multithreading parallel scheme.

VinaLC accuracy is comparable with other docking programs.

X-ray ligand re-docking accuracy study. As mentioned in the method section, the DUD data set

has been employed to validate the accuracy of VinaLC. One way to test a docking program is to

perform the re-docking of X-ray structures. The X-ray ligands were taken out and then docked

back to the active sites of the protein targets in the DUD data set. The RMSD values between the

top scoring pose for a ligand and its X-ray conformation were calculated. The mean of RMSD

	 18	

values of the top scoring poses is 2.76 Å with a standard deviation of 3.27 Å. The median value

is 1.20 Å. A best pose with the smallest RMSD value in the top ten scoring poses was also

determined. 10 out of 40 targets have the identical top scoring pose and best pose. The mean of

RMSD values of the best poses is 2.03 Å with a standard deviation of 2.27 Å. The median value

is 1.10 Å. The cutoff RMSD value for good and bad docking poses is 2.0 Å. Judging from the

mean value and median would result in totally different conclusions. Evaluating the docking

program by mean and median RMSD values apparently becomes an issue. For example, target

ERantagonist (estrogen receptor antagonist) and COMT (catechol O-methyltransferase) have

abnormally large RMSD values that exceed 10 Å. Such a few very poorly docked poses are the

primary factor responsible for the large mean RMSD value.

Accuracy study with cumulative RMSD distribution plot. As shown in the previous section, a few

abnormally large RMSD values will bring the bias to the mean and median values of RMSD. To

avoid such bias, a cumulative RMSD distribution plot was used to demonstrate a complete

picture of RMSD distribution (Figure 4). Firstly, the RMSDs for all 40 targets were sorted in

ascending order of RMSD values. The fractions of the complexes were calculated in a

cumulative way with increasing of the RMSD values. The plot was generated with fraction of the

complexes in the y-axis versus its RMSD value in the x-axis. A vertical dashed line was plotted

at RMSD value of 2 Å to illustrate the cutoff value for the RMSD. As shown in the Figure 4,

64.4% of the top scoring poses was identified with RMSD under the 2.0 Å cutoff while that for

the best poses is 70.0%. For the best poses, all the targets have RMSD values within 10 Å and

about half of the targets have RMSD values less than 1 Å. Overall, the VinaLC docking program

performed well for re-docking of the X-ray ligand back into the active site of the X-ray structure

with the default setting for the grid sizes and exhaustiveness (=8).

	 19	

Comparison of cumulative distribution plots generated by different programs. The X-ray ligand

re-docking accuracy of different docking programs can be compared using cumulative

distribution plot. Cumulative distribution plots for a different data set with 68 protein-ligand

complexes have been generated by Cross and co-workers41. Although they were using a

completely different data set, the cumulative distribution plot still allows a relatively fair

comparison of the VinaLC program from our study and the docking programs employed in their

study because of the cumulative feature of the plots. We found that the performance of VinaLC

in terms of cumulative distribution plot is better than the FlexX and PhDOCK, is comparable to

the DOCK and Surflex, and is very close to the GLIDE.

The initial settings of the docking program are crucial to the docking accuracy. After visually

inspecting the docking results for the target COMT, we found that the abnormally large RMSD

value was due to the ligand being docked outside of the binding pocket. We tried to either reduce

the grid sizes or enlarge the exhaustiveness value to allow more extensive conformational

sampling. Both approaches reduced the RMSD values drastically. For example, using a smaller

grid box with dimensions of 22×22×22 Å for target COMT reduces the RMSD value from 12.86

to 1.13 Å. Doubling the exhaustiveness value also reduces the RMSD value to 0.79 Å. In

general, reducing the grid sizes will constrain the ligand to be docked within the active site and

enlarging the exhaustiveness will increase the conformation searching time. Both result in

obtaining significantly better poses. Thus, carefully defining the settings of the VinaLC docking

program is crucial to obtaining successful results.

Docking enrichment performance. The Receiver Operating Characteristic (ROC) plot was

employed in this study for measuring virtual screening performance52-54. The ROC method can

effectively differentiate two populations so that it can be applied to differentiate the active

	 20	

ligands against the non-active decoys. The plots of ROC curves for all 40 targets in the DUD

data set are shown in Figure 5. The ROC plots are arranged in sequence of 8 nuclear hormone

receptors, 9 kinases, 3 serine proteases, 4 metalloenzymes, 2 folate enzymes, and 14 other

targets38, which are included in the DUD data set. The ROC plots are similar to the ligand

enrichment plots38; however, the x-axis is the fraction of the decoy in the ROC curve plot rather

than the percentage rank of the ligand in the whole data set combining ligand and decoy. For a

target, the docking program can calculate the docking scores for both ligands and decoys. Both

ligands and decoys were sorted according to the significance of docking scores. From high to

low scores, one can calculate the fraction of a selected ligand by dividing its rank (within all

ligands) by the total number of ligands (Ith/Nligands). The fraction of a selected decoy was

calculated in the same way as that of ligand. Then ligands and decoys were mixed and sorted

again. If there are any ligands ranking ahead of a given decoy, the largest fraction number of

these ligands is correspond to the fraction number of selected decoy. If not, zero corresponds to

the fraction of the selected decoy. The ROC plot uses the fraction of each ligand and decoy as

the y-axis and x-axis, respectively. The curve of ROC plot is always a monotonically increasing	

line.

The ROC plots for all 40 targets have revealed their docking enrichment performance. The AR

(androgen receptor) target is the first ROC plot in Figure 5. The red line is the staggered plot of

the fraction of the selected active ligand versus that of selected decoy. If the docking program

works well for a target, the docking scores for active ligands will be more significant than those

of non-active decoys. In the plot, the fraction of the selected ligand will always be larger than its

corresponding fraction of select decoy, and the red line in the plot will always be above and to

the left of the black diagonal line. The plot demonstrates that VinaLC has good enrichment

	 21	

performance for the AR target. The ROC plots show that VinaLC enriches the data of 28 out of

40 targets where most of the red line is above the diagonal line. Thus, VinaLC has good

enrichment performance on 70% targets in the DUD data set. However, if the docking program

prefers the decoys rather than the active ligands, the red line will be under the diagonal line. The

ROC plots have shown that three targets, ACE (angiotensin-converting enzyme), AmpC (AmpC

β-lactamase), and NA (neuraminidase), with the ROC curve under the diagonal lines. It indicates

that VinaLC has bad enrichment performance in these targets. There are six targets, FGFr1

(fibroblast growth factor receptor kinase), PDGFrb (platelet derived growth factor receptor

kinase), ADA (adenosine deaminase), GPB (glycogen phosphorylase β), HIVRt (HIV reverse

transcriptase), and HMGA (hydroxymethylglutaryl-CoA reductase), have red lines almost

overlapping with the diagonal lines, which means VinaLC has no preference in selecting ligands

over decoys and thus the ranking of ligands is near a random selection. The rest of the plots are

more complicate to interpret. For example, the COMT target has a high fraction of active ligands

selected when there is a low fraction of decoys; however, a low fraction of active ligands are

selected when there is a high fraction of decoys. This indicates that VinaLC has better

enrichment performance when a low fraction of decoys exist. This is desirable outcome for early

recovery of active ligands because people only care about a few top score docking poses (usually

0.5-5% of the whole database) during the virtual screening.

Virtual screening performance analysis. The Area Under the Curve (AUC) for the ROC is a

crucial factor to evaluating the virtual screening performance. The value of AUC ranges from 0.0

to 1.0, in which 0.5 means random selection. In this study, the AUC values were categorized into

four ranges. Out of a total of 40 targets, 8 targets have AUC values ranging from 0.75 to 1.0,

which is considered significant enrichment. Twenty-two targets are in the range of 0.55 ~ 0.75,

	 22	

which is considered good enrichment. Thus, about 75% targets (30 out of 40) in the DUD data

set have enrichment. 8 targets are in the range of 0.45 ~ 0.55 which indicates random selection.

Two targets (AmpC and NA) have enrichment worse than random selection with AUC values

below 0.45. The mean ROC AUC of 40 DUD targets is 0.64 for the VinaLC program, which is

better than DOCK, FlexX, ICM37, and PhDOCK55, but worse than GLIDE and Surflex56,57 (Table

1). The range of ROC AUC values is 0.60 to 068 at 95% confidence interval for VinaLC docking

program.

Excellent early recovery of actives. Early recovery of actives is desirable for a docking program.

The large AUC values are often obtained for the cases where early recovery of actives is good.

However, the small AUC values do not necessarily mean that the early recovery of actives is not

good. As pointed out in the previous section, for the COMT target, VinaLC actually has very

good early recovery of actives although its AUC value are only 0.48, even below the random

selection AUC value of 0.5. Thus, the mean ROC enrichment factors have been calculated at

0.5%, 1.0%, 2.0% 5.0% and 10% of the screening database (Table 1). As expected the mean

ROC enrichment decreases as the percentage of the screening database increases due to the

monotonically increasing curve of the ROC plot. Compared to various docking programs,

VinaLC has a fairly high mean ROC enrichments at low percentages. At 0.5 %, VinaLC has a

mean ROC enrichment of 19.9 which is better than most the docking programs shown in the

table except GLIDE SP and Surflex Ringflex. This indicates that VinaLC has very good early

recovery of actives.

The DUD targets can be categorized into several enzyme families, including nuclear hormone

receptors, kinases, serine proteases, folate enzymes, metalloenzymes, and other enzymes38. From

the standpoint of enzyme families, VinaLC program has very good enrichment performance for

	 23	

nuclear hormone receptors except targets PRs, serine proteases, and folate enzymes. For the

kinases, three out of nine targets have near random selections. For metalloenzymes, the ADA

target has near random selection. The remaining three metalloenzymes have good early recovery

of actives.

Through the X-ray ligand re-docking and enrichment studies, the performance of VinaLC is

demonstrated to be better than DOCK, FlexX, ICM, and PhDOCK, and is not as good as GLIDE

and Surflex. Studies31,36 have also shown that VinaLC has many advantages over AutoDock 4.

Thus, in terms of accuracy the VinaLC docking program outperforms most of mainstream

docking programs. Considering accuracy and speed, the parallel version of VinaLC program has

many advantages over the other docking programs.

Conclusion	

In this study, the original AutoDock Vina molecular docking program has been converted to a

parallel VinaLC program using a hybrid scheme of MPI and multithreading. The MPI parallel

implementation employed a master-slave approach to expedite docking calculation assignment

from master to slave. The docking input/output data were packed to reduce the overhead of MPI

activity. The output data was saved in GZip format, which has achieved high compression ratio

to save the disk space. The program is portable to various types of HPC machines including

petascale platforms. A parallel performance analysis of VinaLC program has shown that it can

scale up to more than 15K CPU cores at very low overhead. The profiling of program has

demonstrated that most computing time has been spent on the actual docking calculations. The

percentage of I/O activity in the total computing time is negligible. The overall parallel

	 24	

performance of VinaLC is much better than other parallel docking programs, such as, DOVIS,

Autodock4.lga.MPI.

The accuracy of VinaLC docking program has been validated against DUD data set. The RMSD

values between X-ray ligands and re-docking top poses for most targets in DUD data set are

small. The ROC plots have demonstrated that VinaLC has good enrichment performance on

most targets. An analysis on the mean ROC enrichment factors calculated at various percentage

of the screening database indicates VinaLC has very good early recovery of actives. The mean

ROC AUC has shown that VinaLC program is better than DOCK, FlexX, ICM, and PhDOCK,

but not as good as GLIDE and Surflex. In summary, VinaLC docking program has outperformed

most of mainstream docking programs in terms of docking accuracy.

The current MPI and multithreading hybrid parallel scheme has been successfully deployed on

petascale supercomputers by using only one master node. The master node can handle all the

input and output data on the petascale HPC machines. With explosive growth in biological data

and computer power, we have expected such parallel scheme can be stretched to its limit in the

future. If so, the single master parallel scheme can be easily converted to multiple masters,

together with usage of the parallel I/O, which should be able to overcome such limitation when

the exascale high performance computing is available.

Acknowledgement	

The authors thank Scott Futral, John Gyllenhaal, and Ryan Day from Lawrence Livermore

National Laboratory Computation Directorate for helpful discussion of the parallel scheme. We

thank Livermore Computing for the computer time and Laboratory Directed Research and

	 25	

Development for the funding (12-SI-004). This work was performed under the auspices of the

United States Department of Energy by the Lawrence Livermore National Laboratory under

Contract DE-AC52-07NA27344.

	
	 	

	 26	

Figures	
	
	
	

	
Figure 1 Mixed Parallel Scheme

	 	

	

CPU CPU

	 	 	

CPU CPU

	 	 	

Shared	 Memory

	 	 	 	

	

CPU CPU

	 	 	

CPU CPU

	 	 	

Shared	 Memory

	 	 	 	

	

CPU CPU

	 	 	

CPU CPU

	 	 	

Shared	 Memory

	 	 	 	

	

CPU CPU

	 	 	

CPU CPU

	 	 	

Shared	 Memory

	 	 	 	

Interconnect 	 	 	
	 	

	 	

	 	 	

	
MPI

	

Multi-‐threading

	

Multi-‐threading

	 Multi-‐threading 	 Multi-‐threading

	 27	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
Figure 2 MPI Scheme. Pairs of MPI calls were labeled by different colors. Program loops were
designated as black boxes with grey background. Nrec, Nlig, and Nproc are the number of the
receptors, ligands, MPI processes, respectively.

	
	

	 	

N
data

=min(N
job

, N
proc

-1); for(;i<N
data

;)

MPI_Send(&rank, master, …)

MPI_Recv(&jobFlag, master, …)

MPI_Recv(&inpData, master, …)

MPI_Send(&outData, master, …)

MPI_Finalize()

DockingJob(inpData, outData)

while(1)

If(jobFlag==0) break;

MPI_Recv(&freeProc, any_source, …)

MPI_Send(&jobFlag,	 freeProc,	 …)	

MPI_Send(&inpData, freeProc, …)

MPI_Recv(&outData, any_source, …)

MPI_Recv(&freeProc, any_source, …)

MPI_Send(&jobFlag, freeProc, …)

count++;

count=0; N
job

=N
rec

*N
lig;

; for(;j <N
job

;)

jobFlag=1;

for(;i<N
proc

-1;)

jobFlag=0;

Master Process Slave	 Processes	

MPI_Recv(&outData, any_source, …)

If (count<N
proc

-1) continue;

	 28	

	

Figure 3 Parallel performance analysis of the VinaLC program on 600, 1200, 2400, 6000, 12000,
and 15408 CPU cores. (a) MPI wall time versus number of the CPU cores. (b) Average CPU
time per docking run versus number of the CPU cores. The dashed line is the ideal average CPU
time per docking run. (c) The speed up of VinaLC docking calculation at different number of the
CPU cores. The diagonal dashed line is the ideal scale-up. (d) The MPI time percentages for
average, master, and slave processes at different number of CUP cores calculated by linking
program to mpiP library. The test case for each simulation is a collection of 100K ligands
selected from ZINC database, which were docked into active site of Thermus thermophilus
gyrase B ATP-binding domain.

	

	 29	

	
Figure 4 Cumulative RMSD distribution plot for the DUD data set. X-ray ligand conformation
was used as input. The blue line is the RMSD between the top scoring pose and the X-ray
structure while the red line is that of the best pose.

	

	 30	

	 31	

	 32	

Figure 5	 ROC plots for the 40 targets in the DUD data set. Diagonal lines indicate random
performance.

	 33	

Table 1 Statistical Results for Virtual Screening Using DUD data set.	

	 	

 Mean ROC Enrichments

Program Source Mean ROC
AUC

95% CI 0.5% 1.0% 2.0% 5.0% 10.0%

DOCK Ref41 0.55 0.50-0.59 18.8 12.3 8.2 4.7 3.0

FlexX Ref41 0.61 0.54-0.67 13.7 9.8 7.2 4.4 3.1

GLIDE
HTVS

Ref41 0.72 0.67-0.77 18.9 14.8 10.7 6.5 4.3

ICM Ref41 0.63 0.58-0.68 16.9 12.7 8.0 4.6 3.1

PhDOCK Ref41 0.59 0.54-0.64 16.9 11.3 7.7 4.1 2.8

Surflex Ref41 0.66 0.61-0.70 14.3 11.1 7.9 4.9 3.4

GLIDE SP Ref41 0.77 0.71-0.82 21.8 16.7 12.2 7.9 5.1

Surflex
Ringflex

Ref41 0.72 0.67-0.77 20.0 16.2 12.0 6.8 4.3

VinaLC 0.64 0.60-0.68 19.9 11.4 9.0 6.1 3.2

	 34	

	

Reference

1.	 Jorgensen,	 W.	 L.	 The	 many	 roles	 of	 computation	 in	 drug	 discovery.	 Science	 2004,	
303(5665),	 1813.	
2.	 Kitchen,	 D.	 B.;	 Decornez,	 H.;	 Furr,	 J.	 R.;	 Bajorath,	 J.	 Docking	 and	 scoring	 in	 virtual	
screening	 for	 drug	 discovery:	 methods	 and	 applications.	 Nat	 Rev	 Drug	 Discov	 2004,	 3(11),	
935.	
3.	 Cheng,	 T.	 J.;	 Li,	 Q.	 L.;	 Zhou,	 Z.	 G.;	 Wang,	 Y.	 L.;	 Bryant,	 S.	 H.	 Structure-‐Based	 Virtual	
Screening	 for	 Drug	 Discovery:	 a	 Problem-‐Centric	 Review.	 Aaps	 Journal	 2012,	 14(1),	 133.	
4.	 Hopkins,	 A.	 L.;	 Groom,	 C.	 R.	 The	 druggable	 genome.	 Nature	 Reviews	 Drug	 Discovery	
2002,	 1(9),	 727.	
5.	 Berman,	 H.	 M.,	 et	 al.	 The	 Protein	 Data	 Bank.	 Nucleic	 Acids	 Res	 2000,	 28(1),	 235.	
6.	 Kirkpatrick,	 P.;	 Ellis,	 C.	 Chemical	 space.	 Nature	 2004,	 432(7019),	 823.	
7.	 Irwin,	 J.	 J.;	 Shoichet,	 B.	 K.	 ZINC	 -‐	 A	 free	 database	 of	 commercially	 available	
compounds	 for	 virtual	 screening.	 J	 Chem	 Inf	 Model	 2005,	 45(1),	 177.	
8.	 Ewing,	 T.	 J.	 A.;	 Makino,	 S.;	 Skillman,	 A.	 G.;	 Kuntz,	 I.	 D.	 DOCK	 4.0:	 Search	 strategies	 for	
automated	 molecular	 docking	 of	 flexible	 molecule	 databases.	 J	 Comput	 Aided	 Mol	 Des	 2001,	
15(5),	 411.	
9.	 Meng,	 E.	 C.;	 Shoichet,	 B.	 K.;	 Kuntz,	 I.	 D.	 Automated	 docking	 with	 grid‐based	 energy	
evaluation.	 J	 Comput	 Chem	 1992,	 13(4),	 505.	
10.	 Goodsell,	 D.	 S.;	 Morris,	 G.	 M.;	 Olson,	 A.	 J.	 Automated	 docking	 of	 flexible	 ligands:	
Applications	 of	 AutoDock.	 J	 Mol	 Recognit	 1996,	 9(1),	 1.	
11.	 Morris,	 G.	 M.,	 et	 al.	 Automated	 docking	 using	 a	 Lamarckian	 genetic	 algorithm	 and	 an	
empirical	 binding	 free	 energy	 function.	 J	 Comput	 Chem	 1998,	 19(14),	 1639.	
12.	 Rarey,	 M.;	 Kramer,	 B.;	 Lengauer,	 T.;	 Klebe,	 G.	 A	 fast	 flexible	 docking	 method	 using	 an	
incremental	 construction	 algorithm.	 J	 Mol	 Biol	 1996,	 261(3),	 470.	
13.	 Friesner,	 R.	 A.,	 et	 al.	 Glide:	 A	 new	 approach	 for	 rapid,	 accurate	 docking	 and	 scoring.	
1.	 Method	 and	 assessment	 of	 docking	 accuracy.	 J	 Med	 Chem	 2004,	 47(7),	 1739.	
14.	 Halgren,	 T.	 A.,	 et	 al.	 Glide:	 A	 new	 approach	 for	 rapid,	 accurate	 docking	 and	 scoring.	 2.	
Enrichment	 factors	 in	 database	 screening.	 J	 Med	 Chem	 2004,	 47(7),	 1750.	
15.	 Jones,	 G.;	 Willett,	 P.;	 Glen,	 R.	 C.;	 Leach,	 A.	 R.;	 Taylor,	 R.	 Development	 and	 validation	 of	
a	 genetic	 algorithm	 for	 flexible	 docking.	 J	 Mol	 Biol	 1997,	 267(3),	 727.	
16.	 Halperin,	 I.;	 Ma,	 B.	 Y.;	 Wolfson,	 H.;	 Nussinov,	 R.	 Principles	 of	 docking:	 An	 overview	 of	
search	 algorithms	 and	 a	 guide	 to	 scoring	 functions.	 Proteins-‐Structure	 Function	 and	 Genetics	
2002,	 47(4),	 409.	
17.	 Warren,	 G.	 L.,	 et	 al.	 A	 critical	 assessment	 of	 docking	 programs	 and	 scoring	 functions.	
J	 Med	 Chem	 2006,	 49(20),	 5912.	
18.	 Wang,	 R.	 X.;	 Lu,	 Y.	 P.;	 Wang,	 S.	 M.	 Comparative	 evaluation	 of	 11	 scoring	 functions	 for	
molecular	 docking.	 J	 Med	 Chem	 2003,	 46(12),	 2287.	
19.	 Raha,	 K.,	 et	 al.	 The	 role	 of	 quantum	 mechanics	 in	 structure-‐based	 drug	 design.	 Drug	
Discovery	 Today	 2007,	 12(17-‐18),	 725.	
20.	 PBS	 Professional	 home	 page,	 http://www.pbsworks.com/.	

	 35	

21.	 Morris,	 G.	 M.,	 et	 al.	 AutoDock4	 and	 AutoDockTools4:	 Automated	 docking	 with	
selective	 receptor	 flexibility.	 J	 Comput	 Chem	 2009,	 30(16),	 2785.	
22.	 Jiang,	 X.	 H.;	 Kumar,	 K.;	 Hu,	 X.;	 Wallqvist,	 A.;	 Reifman,	 J.	 DOVIS	 2.0:	 an	 efficient	 and	
easy	 to	 use	 parallel	 virtual	 screening	 tool	 based	 on	 AutoDock	 4.0.	 Chemistry	 Central	 Journal	
2008,	 2.	
23.	 Garg,	 V.;	 Arora,	 S.;	 Gupta,	 C.	 Cloud	 Computing	 Approaches	 to	 Accelerate	 Drug	
Discovery	 Value	 Chain.	 Combinatorial	 Chem	 High	 Throughput	 Screening	 2011,	 14(10),	 861.	
24.	 Ren,	 J.	 Y.;	 Williams,	 N.;	 Clementi,	 L.;	 Krishnan,	 S.;	 Li,	 W.	 W.	 Opal	 web	 services	 for	
biomedical	 applications.	 Nucleic	 Acids	 Res	 2010,	 38,	 W724.	
25.	 Korb,	 O.;	 Stutzle,	 T.;	 Exner,	 T.	 E.	 Accelerating	 Molecular	 Docking	 Calculations	 Using	
Graphics	 Processing	 Units.	 J	 Chem	 Inf	 Model	 2011,	 51(4),	 865.	
26.	 Yang,	 H.	 L.,	 et	 al.	 In	 Advances	 in	 Computational	 Biology;	 Arabnia,	 H.	 R.,	 Ed.;	 Springer-‐
Verlag	 Berlin:	 Berlin,	 2010,	 p	 497.	
27.	 Lang,	 P.	 T.,	 et	 al.	 DOCK	 6:	 Combining	 techniques	 to	 model	 RNA-‐small	 molecule	
complexes.	 RNA-‐Publ	 RNA	 Soc	 2009,	 15(6),	 1219.	
28.	 Wang,	 J.	 M.;	 Wolf,	 R.	 M.;	 Caldwell,	 J.	 W.;	 Kollman,	 P.	 A.;	 Case,	 D.	 A.	 Development	 and	
testing	 of	 a	 general	 amber	 force	 field.	 J	 Comput	 Chem	 2004,	 25(9),	 1157.	
29.	 CUDA™	 is	 a	 parallel	 computing	 platform	 and	 programming	 model	 invented	 by	 NVIDIA,	
http://www.nvidia.com/object/cuda_home_new.html.	
30.	 Collignon,	 B.;	 Schulz,	 R.;	 Smith,	 J.	 C.;	 Baudry,	 J.	 Task-‐parallel	 message	 passing	
interface	 implementation	 of	 Autodock4	 for	 docking	 of	 very	 large	 databases	 of	 compounds	
using	 high-‐performance	 super-‐computers.	 J	 Comput	 Chem	 2011,	 32(6),	 1202.	
31.	 Trott,	 O.;	 Olson,	 A.	 J.	 AutoDock	 Vina:	 Improving	 the	 speed	 and	 accuracy	 of	 docking	
with	 a	 new	 scoring	 function,	 efficient	 optimization,	 and	 multithreading.	 J	 Comput	 Chem	
2010,	 31(2),	 455.	
32.	 Seeliger,	 D.;	 de	 Groot,	 B.	 L.	 Ligand	 docking	 and	 binding	 site	 analysis	 with	 PyMOL	 and	
Autodock/Vina.	 J	 Comput	 Aided	 Mol	 Des	 2010,	 24(5),	 417.	
33.	 Ranjan,	 N.;	 Andreasen,	 K.	 F.;	 Kumar,	 S.;	 Hyde-‐Volpe,	 D.;	 Arya,	 D.	 P.	 Aminoglycoside	
Binding	 to	 Oxytricha	 nova	 Telomeric	 DNA.	 Biochemistry	 (Mosc)	 2010,	 49(45),	 9891.	
34.	 Sepe,	 V.,	 et	 al.	 Discovery	 of	 Sulfated	 Sterols	 from	 Marine	 Invertebrates	 as	 a	 New	
Class	 of	 Marine	 Natural	 Antagonists	 of	 Farnesoid-‐X-‐Receptor.	 J	 Med	 Chem	 2011,	 54(5),	
1314.	
35.	 Plaza,	 A.;	 Keffer,	 J.	 L.;	 Bifulco,	 G.;	 Lloyd,	 J.	 R.;	 Bewley,	 C.	 A.	 Chrysophaentins	 A-‐H,	
Antibacterial	 Bisdiarylbutene	 Macrocycles	 That	 Inhibit	 the	 Bacterial	 Cell	 Division	 Protein	
FtsZ.	 J	 Am	 Chem	 Soc	 2010,	 132(26),	 9069.	
36.	 Chang,	 M.	 W.;	 Ayeni,	 C.;	 Breuer,	 S.;	 Torbett,	 B.	 E.	 Virtual	 Screening	 for	 HIV	 Protease	
Inhibitors:	 A	 Comparison	 of	 AutoDock	 4	 and	 Vina.	 PLoS	 One	 2010,	 5(8).	
37.	 Abagyan,	 R.;	 Totrov,	 M.;	 Kuznetsov,	 D.	 ICM	 -‐	 A	 NEW	 METHOD	 FOR	 PROTEIN	
MODELING	 AND	 DESIGN	 -‐	 APPLICATIONS	 TO	 DOCKING	 AND	 STRUCTURE	 PREDICTION	
FROM	 THE	 DISTORTED	 NATIVE	 CONFORMATION.	 J	 Comput	 Chem	 1994,	 15(5),	 488.	
38.	 Huang,	 N.;	 Shoichet,	 B.	 K.;	 Irwin,	 J.	 J.	 Benchmarking	 sets	 for	 molecular	 docking.	 J	 Med	
Chem	 2006,	 49(23),	 6789.	
39.	 Boost	 Organization	 Boost	 C++	 Libraries	 is	 available	 at:	 ,	 http://www.boost.org/.	
40.	 Good,	 A.	 C.;	 Oprea,	 T.	 I.	 Optimization	 of	 CAMD	 techniques	 3.	 Virtual	 screening	
enrichment	 studies:	 a	 help	 or	 hindrance	 in	 tool	 selection?	 J	 Comput	 Aided	 Mol	 Des	 2008,	
22(3-‐4),	 169.	

	 36	

41.	 Cross,	 J.	 B.,	 et	 al.	 Comparison	 of	 Several	 Molecular	 Docking	 Programs:	 Pose	
Prediction	 and	 Virtual	 Screening	 Accuracy.	 J	 Chem	 Inf	 Model	 2009,	 49(6),	 1455.	
42.	 von	 Korff,	 M.;	 Freyss,	 J.;	 Sander,	 T.	 Comparison	 of	 Ligand-‐	 and	 Structure-‐Based	
Virtual	 Screening	 on	 the	 DUD	 Data	 Set.	 J	 Chem	 Inf	 Model	 2009,	 49(2),	 209.	
43.	 DUD	 database,	 A	 Directory	 of	 Useful	 Decoys,	 Ligand,	 decoy,	 and	 target	 structures	
available	 at:	 ,	 http://dud.docking.org/.	
44.	 Sanner,	 M.	 F.	 Python:	 A	 programming	 language	 for	 software	 integration	 and	
development.	 J	 Mol	 Graph	 Model	 1999,	 17(1),	 57.	
45.	 Pearlman,	 D.	 A.;	 Charifson,	 P.	 S.	 Improved	 scoring	 of	 ligand-‐protein	 interactions	
using	 OWFEG	 free	 energy	 grids.	 J	 Med	 Chem	 2001,	 44(4),	 502.	
46.	 SLURM.	 Simple	 Linux	 Utility	 for	 Resource	 Management,	
https://computing.llnl.gov/linux/slurm/.	
47.	 Sequoia,	 the	 new	 IBM	 20-‐petaflops	 supercomputing	 system	 at	 LLNL,	
https://asc.llnl.gov/computing_resources/sequoia/.	
48.	 InfiniBand	 is	 a	 switched	 fabric	 communications	 link	 used	 in	 high-‐performance	
computing	 and	 enterprise	 data	 centers,	 http://www.infinibandta.org/.	
49.	 MVAPICH:	 MPI	 over	 InfiniBand,	 10GigE/iWARP	 and	 RoCE,	 http://mvapich.cse.ohio-‐
state.edu/.	
50.	 mpiP:	 Lightweight,	 Scalable	 MPI	 Profiling,	 http://mpip.sourceforge.net/.	
51.	 Open|SpeedShop,	 an	 open	 source	 multi	 platform	 Linux	 performance	 tool	
http://www.openspeedshop.org.	
52.	 Swets,	 J.	 A.;	 Dawes,	 R.	 M.;	 Monahan,	 J.	 Better	 decisions	 through	 science.	 Sci	 Am	 2000,	
283(4),	 82.	
53.	 Kellenberger,	 E.;	 Foata,	 N.;	 Rognan,	 D.	 Ranking	 targets	 in	 structure-‐based	 virtual	
screening	 of	 three-‐dimensional	 protein	 libraries:	 Methods	 and	 problems.	 J	 Chem	 Inf	 Model	
2008,	 48(5),	 1014.	
54.	 Jain,	 A.	 N.	 Morphological	 similarity:	 A	 3D	 molecular	 similarity	 method	 correlated	
with	 protein-‐ligand	 recognition.	 J	 Comput	 Aided	 Mol	 Des	 2000,	 14(2),	 199.	
55.	 Joseph-‐McCarthy,	 D.;	 Alvarez,	 J.	 C.	 Automated	 generation	 of	 MCSS-‐derived	
pharmacophoric	 DOCK	 site	 points	 for	 searching	 multiconformation	 databases.	 Proteins-‐
Structure	 Function	 and	 Genetics	 2003,	 51(2),	 189.	
56.	 Jain,	 A.	 N.	 Surflex:	 Fully	 automatic	 flexible	 molecular	 docking	 using	 a	 molecular	
similarity-‐based	 search	 engine.	 J	 Med	 Chem	 2003,	 46(4),	 499.	
57.	 Jain,	 A.	 N.	 Surflex-‐Dock	 2.1:	 Robust	 performance	 from	 ligand	 energetic	 modeling,	
ring	 flexibility,	 and	 knowledge-‐based	 search.	 J	 Comput	 Aided	 Mol	 Des	 2007,	 21(5),	 281.	
	

	 37	

Supporting Information

Table S1: List of DUD targets and RMSD of top scoring poses and best poses.

 Vina Docking Pose RMSD (Å)
Protein PDB ID Ligands # Decoys # Top scoring pose Best pose
AR 1xq2 74 2630 0.47 0.47
ERagonist 1l2i 67 2361 0.60 0.60
ERantagonist 3ert 39 1399 10.43 9.53
GR 1m2z 78 2804 0.31 0.31
MR 2aa2 15 535 0.26 0.26
PPARg 1fm9 81 2910 3.2 2.38
PR 1sr7 27 967 0.49 0.49
RXRa 1mvc 20 708 0.22 0.22
CDK2 1ckp 50 1780 7.46 3.62
EGFr 1m17 416 14914 1.55 1.55
FGFr1 1agw 11 4216 1.03 1.03
HSP90 1uy6 24 861 0.68 0.68
P38  MAP 1kv2 234 8399 0.60 0.60
PDGFrb model 157 5625 0.61 0.61
SRC 2src 162 5801 6.15 5.66
TK 1kim 22 785 5.63 5.25
VEGFr2 1vr2 74 2647 1.23 1.23
FXa 1f0r 142 5102 1.55 0.46
thrombin 1ba8 65 2294 2.27 1.99
trypsin 1bju 43 1545 0.69 0.69
ACE 1o86 49 1728 7.40 7.40
ADA 1stw 23 822 1.72 1.72
COMT 1h1d 12 430 12.81 3.07
PDE5 1xp0 51 1810 0.78 0.78
DHFR 3dfr 201 7150 3.55 2.79
GART 1c2t 21 753 2.08 1.17
AChE 1eve 105 3732 1.16 1.16
ALR2 1ah3 26 920 6.29 5.77
AmpC 1xgj 21 734 6.03 1.67
COX-1 1q4g 25 850 0.42 0.42
COX-2 1cx2 349 12491 5.60 5.60
GPB 1a8i 52 1851 0.24 0.24
HIVPR 1hpx 53 1888 9.69 4.20
HIVRT 1rt1 40 1439 4.27 4.27
HMGR 1hw8 35 1242 1.31 1.31
InhA 1p44 85 3043 0.27 0.27
NA 1a4g 49 1745 0.46 0.46
PARP 1efy 33 1178 0.51 0.51

	 38	

PNP 1b8o 25 884 0.19 0.19
SAHH 1a7a 33 1159 0.37 0.37

* Abbreviations: ACE, angiotensin-converting enzyme; AChE, acetylcholinesterase; ADA,

adenosine deaminase; ALR2, aldose reductase; AmpC, AmpC β-lactamase; AR, androgen
receptor; CDK2, cyclindependent kinase 2; COMT, catechol O-methyltransferase; COX-1,
cyclooxygenase-1; COX-2, cyclooxygenase-2; DHFR, dihydrofolate reductase; EGFr,
epidermal growth factor receptor; ER, estrogen receptor; FGFr1, fibroblast growth factor
receptor kinase; FXa, factor Xa; GART, glycinamide ribonucleotide transformylase; GPB,
glycogen phosphorylase β; GR, glucocorticoid receptor; HIVPR, HIV protease; HIVRT, HIV
reverse transcriptase; HMGR, hydroxymethylglutaryl-CoA reductase; HSP90, hu- man heat
shock protein 90; InhA, enoyl ACP reductase; MR, mineralocorticoid receptor; NA,
neuraminidase; P38 MAP, P38 mitogen activated protein; PARP, poly(ADP-ribose)
polymerase; PDE5, phosphodiesterase 5; PDGFrb, platelet derived growth factor receptor
kinase; PNP, purine nucleoside phosphorylase; PPARg, peroxisome proliferator activated
receptor γ; PR, progesterone receptor; RXRa, retinoic X receptor α; SAHH, S-adenosyl-
homocysteine hydrolase; SRC, tyrosine kinase SRC; TK, thymidine kinase; VEGFr2,
vascular endothelial growth factor receptor; ATP, adenosine-5’-triphosphate; β-GAR, β-
glycinamide ribonucleotide; NAD(P)-(H), nicotinamide adenine dinucleotide (phosphate)-
(reduced); PLP, pyridoxal-5’-phosphate.

